COMPANY 

INSIGHT

Sponsored by

next generation sequencing device materials 

Next Generation Sequencing, so-called “NGS”, is the term coined for the massively parallel sequencing resulting in gigabytes of sequence data per day to quickly identify gene sequences. NGS is being harnessed for everything from personalized medicine to rapidly identifying microbial food contaminants [1]. The best Next Generation Sequencing device materials continue to shift as increasing innovative fabrication and detection approaches to NGS emerge.

Next generation sequencing device materials are complex and manufacture must overcome many hurdles. 

Many technologies use optical methods – and in this use case, glass offers the best optical properties. NGS sequencers such as those by Illumina and Pacific Biosystems continue to use glass. Pacific Biosystems is pushing the limits of detection for its new single molecule sequencing product, so background fluorescence and scattering are critical parameters to performance. Emerging next generation sequencing powerhouse, LaserGen, utilizes fluorescence for detection with glass microfluidic flow cells.


Illumina managed to reach the $1,000 genome target by harnessing the power of glass fabrication. By structuring the glass surface, creating patterned flow cells, it was possible for Illumina to increase the density of the sequencing space and reduce image acquisition time since patterned images are easier to overlap during data acquisition rather than unstructured images [2]. A critical parameter for this success is the high accuracy of the sub-micron patterning on a wafer level.


This enables the extremely dense packaging of the sequencing space within the microfluidic chip, reaching the optical resolution limit of conventional fluorescent imaging systems. Details of the patterned flow cells at Illumina, Inc. can be found on the Illumina website [3].

caption 

As the $1000 genome gives way to the $100 genome, the desire to minimize costs by reducing the volumes of expensive reagents drives the LOD requirement further down. This increases the need for the low auto-fluorescence of the microfluidic flow cell material. Illumina’s approach relies also on massively parallel analysis, which requires dense feature patterning on glass chips. QIAGEN’s hydrodynamic approach and Bio-Rad’s digital droplet microfluidics design can allow for other materials for the droplet generation that is part of the secret of their sequencing speed [1].


Another cost-reducing approach is to eliminate the label altogether. Companies like Oxford NanoPore and Genia-Roche use a label-free pore-based approach that requires the integration of high aspect ratio nanopores with a direct electronic detection method for sequencing, driving the use of silicon as the microfluidic chip material rather than glass [1]. These new methods relying on CMOS chips for direct electronic detection have also been embraced by Ion Torrent-Thermo Fisher Scientific.


While label-free assays may seem to eliminate the need for the optical properties of glass, glass still offers some advantages. For silicon and glass, the submicron control of the channel etch depth that is possible can result in improved signal-to-noise for impedance detection. The ability to readily incorporate ITO electrodes allows for the integration of digital microfluidic sample preparation, helping to reduce precious sample and expensive reagent consumption.

Microscope Slide sized Generic NGS Flow Cell provided by IMT AG. Sub-micron structures are generated on a 200mm glass wafer. This wafer is sealed with a second wafer containing isotropically etched channels, fluidic access holes and an anti-fouling coating; i.e. PEG.

caption 

Illumina is a classic example of the in vitro diagnostic life science instrumentation developers in the NGS market. These companies have high competences in the chemistry, meaning they optimize their assay procedures to perform NGS using sequencing by synthesis (SBS); which is where their intellectual property (IP) lies.


Despite the forays into label free solutions, the majority of NGS device developers utilize detection and thus require glass substrates. NGS device development and manufacture requires glass foundries that understand how to overcome the technical challenges of low signal fluorescence detection, often reaching the optical resolution limit of conventional fluorescent imaging systems.


NGS flow cells must be manufactured to custom dimensions, lay-out, and biofunctionalized pattern, with micrometer or sub-micrometer feature sizes, and sealed without disrupting the biofunctionalization. Ideally, the biofunctionalized molecule is an amino-silane alone or on top of a dielectric or metallic coating. The rest of the flow cell channel network is coated by an anti-fouling coating such as polyethylene glycol (PEG).


These complex specifications can be met by a using glass as a primary substrate but require a glass fabrication foundry that can handle the custom binding chemistry; turning the generic platform into a highly customized platform that can be manufactured to scale.

caption 

Works Cited


[1]

W. J. Ansorge, "Next Generation DNA Sequencing (II): Techniques, Applications," Next Generat Sequenc & Applic 2016, vol. S1, no. 005, pp. Open Access, dx.doi.org/10.4172/2469-9853.s1-005, 2016.

[2]

S. Bowen, "Nanotechnology for a Genomic Revolution," in Advanced Technology Workshop on Advanced Packaging for Medical Microelectronics, San Diego, 2017.

[3]

Illumina, [Online]. Available: www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology/patterned-flow-cells.html.

caption 

Go to article: Home | Deep Space DiagnosticsGo to article: In this issueGo to article: MPS Microsystems Company InsightGo to article: MPS MicrosystemsGo to article: Contents Go to article: BioInteractions Company Insight Go to article: BioInteractions Go to article: Critical Software Company Insight Go to article: Critical SoftwareGo to article: NewsGo to article: Sandvik Company InsightGo to article: Sandvik Go to article: Omnitron Go to article: The Medical Industry Briefing Go to article: Sab BroeckskesGo to article: Formacoat Company InsightGo to article: FormacoatGo to article: Exceeding expectations: home sperm testing in the fertility tech marketGo to article: Siemens Company Insight Go to article: Siemens Go to article: Micro Systems TechnologiesGo to article: Space simulation: how gaming tech is being used to medically train astronautsGo to article: Braxton Manufacturing Go to article: CaelesteGo to article: Duodenoscopes: a dirty problemGo to article: Nelson Labs Company InsightGo to article: Nelson Labs Go to article: Mobile mind control: material engineering meets neurobiology Go to article: Abbott & CoGo to article: IMT Company InsightGo to article: IMTGo to article: Breathe easy: improving at-home asthma managementGo to article: Erdmann Design Company Insight Go to article: Erdmann Design Go to article: Q&A: the challenge of foetal monitoring with Professor Barrie Hayes-GillGo to article: Protomatic Medical Company InsightGo to article: Protomatic MedicalGo to article: Roundtable: debating the benefits of the NHS’s newly launched AI labGo to article: Europlasma Company Insight Go to article: EuroplasmaGo to article: The long road to reliable organ printingGo to article: SartoriusGo to article: Cap BiomaterialsGo to article: URGENT/11 vulnerabilities showcase cybersecurity risks for connected medical devicesGo to article: Telemed Company InsightGo to article: TelemedGo to article: Admedus turns focus to TAVR market with next-generation tissue technologyGo to article: Turck Duotec Company Insight Go to article: Turck DuotecGo to article: 3BYGo to article: Medtronic’s extravascular ICD is pushing innovationGo to article: AtoZ-CRO Company InsightGo to article: AtoZ-CRO Go to article: Accurate Biometrics Company InsightGo to article: Accurate BiometricsGo to article: Obstacle course for sperm is helping IVF scientists find the best swimmersGo to article: MicronovaGo to article: ARPA Company InsightGo to article: ARPAGo to article: Varian enters the embolisation particles marketGo to article: Ginolis Company InsightGo to article: GinolisGo to article: Verdict Insights: The latest verdict insight from Medical Technology Go to article: TEN MedPrint Company Insight Go to article: TEN MedPrint Go to article: Future of healthcare: What will medicine look like in 2040?Go to article: GF Machining Solutions Company InsightGo to article: GF Machining Solutions Go to article: 3D printing: Bringing assistive technology to the developing worldGo to article: iTAC Software Go to article: CarmoGo to article: Stepping up anatomical 3D printingGo to article: Key Plastics Company Insight Go to article: Key PlasticsGo to article:  Coaxial Electrospinning: Revolutionising MedicineGo to article: SARA: The robot targeting European elderly careGo to article: ClippardGo to article: Bright PlasticsGo to article: Asahi InteccGo to article: Bias in the system: the leading healthcare algorithm with bias against black patientsGo to article: Mdeg Digital Go to article: Maraca InternationalGo to article: OptelGo to article: Body cameras: The benefits in mental healthcareGo to article: CleanControlling MedicalGo to article: Abatek InternationalGo to article: XavitechGo to article: Take a seat: The mental health chatbots encroaching on the therapist’s couchGo to article: mdi ConsultantsGo to article: MK FluidicsGo to article: AI for sight: The technology transforming infant eye disorder diagnosisGo to article: ProByLas Go to article: ITV Denkendorf ProduktserviceGo to article: Deals in brief powered by GlobalDataGo to article: TS Quality & EngineeringGo to article: Mi3 Medical IntelligenceGo to article: The key list powered by GlobalDataGo to article: AerogelexGo to article: EventsGo to article: PI CeramicGo to article: Next issueGo to article: Qmedics Company Insight Go to article: QmedicsGo to article: Tresky