

- unlimited miniaturization
- reduced cost
- flexible

As passionate experts in thin-film encapsulation, we provide unique solutions to our customers to help protect their products against harsh environmental conditions, such as corrosive media and body fluid

We have developed a new conformal coating platform which is unique for its superior hermeticity and minimal volume utilization while keeping costs at a competitive level.

Our technology platform is an enabler for increased reliability and further miniaturization of our customers' products.

#### **OUR TECHNOLOGY**

Our coating typically combines organic and inorganic layers deposited via a modified Chemical Vapor Deposition process.

A novel single-chamber reactor was developed to allow a 3D conformal deposition of the multilayer on a variety of substrate and

For instance, a 10-micron multilayer that alternates dense ceramic and Parylene thin films, creates a hermetic and biocompatible material that is used to encapsulate implantable medical devices.

#### OUR PRODUCT AND SERVICES

We currently offer two types of products & services closely linked to our technology platform.

- 1. Engineering services to tailor our multilayer, Parylene and ceramic coating solutions to meet specific performance reauirements from our different customers (MedTech, jewelry, electronic boards, and sensors):
- 2. Routine coating of our customers' products/components in an ESD safe, class 5

Medical implants

Thin-film batteries

cleanroom environment including proprietary surface preparation techniques, quality testing and certificate of conformity (when required).

Our offer will soon include:

- Installing a multilayer coating production lines at our customer location (includes maintenance and technology transfer);
- Super-flexible printed circuit boards and smart foldable devices.

# Watchmaking components 0 Wearable devices SMART ENCAPSULATION Printed circuit boards Magnets

Surgical instruments

### COATING PERFORMANCE **HIGHLIGHTS**

- $\sqrt{\text{Coat-X}}$  multilayer is typically 1'000 times more watertight than a conventional Parylene-C layer of equivalent thickness (and typically 10'000 times better than epoxy)
- $\sqrt{}$  It can be applied to multiple substrates of complex geometries such as populated electronic circuits. metals. ceramics. polymers and biological materials
- $\sqrt{}$  Organic and inorganic layers are deposited at low temperature (<50°C) in a single-chamber reactor; sequence and thickness of layers can be tailored to customer's need
- √ Coat-X's encapsulation solution remains cost effective thanks to our ability to process parts in batches in reactors of different sizes
- $\sqrt{\text{Coat-X}}$  multilayer uses biocompatible materials
- √ Ceramic layers embedded in Coat-X's multilayer provided a superior resistance to aggressive chemicals and mechanical wear
- $\sqrt{A}$  few micron-thick multilayer coating remains transparent and flexible, and can be used as an electrical insulator

### CURRENT APPLICATIONS AND PERSPECTIVES

Our technology is successfully used to protect implantable medical devices, flexible electronic circuit boards and sensors that needed to work in a harsh environment. highly corrosion sensitive magnets exposed to moisture, and jewelry.

Novel applications requiring highly flexible and foldable electronic substrates are being developed.

## OUR TEAM

To commercialize the technology developed by Andreas Hogg (CEO), a team of engineers and professionals has been assembled. The team is composed of former Johnson & Johnson colleagues, Asun Rubio (Quality Manager) Yanik Tardy (COO) and Eric Nagels (CFO); experts in thin-film reactor design and industrialization, Ulrich Kroll and Jérôme Steinhauser: and an experienced thin-film coating production manager, Hervé Le Dréo.



COAT-





Coat-X SA Eplatures-Grise 17 2300 La Chaux-de-Fonds Switzerland

